
Advanced Algorithms Homework 3 CS181AA

Advanced Algorithms
Homework 3

November 2, 2025

Instructions

There are usually many different algorithms one can think of to solve a given problem, especially
NP-hard ones. The first goal of this segment of the course is to learn how to reason about such
algorithms, and systematically compare their effectiveness. The second goal is to design such
algorithms yourself. All four problems below will touch on both of these important goals.

You are encouraged to work together on these problems or come to me if you are stuck. However,
you should write up your solutions yourself. Please list the people you worked with at the top of
your submission. Looking for answers on the internet is not allowed, nor is working with an AI-
powered system for any part of this assignment. You must understand everything you submit and
I reserve the right to ask you to orally explain your answer to me. You may write your solutions
by hand or in latex. Either way, submit them on gradescope by 10:00pm on 11/18/2025.

Page 1 of 5



Advanced Algorithms Homework 3 CS181AA

Problem 1 - Number packing (20 points)

Suppose you are given a set of positive integers A = {a1, a2, . . . , an} and a positive integer B. A
subset S ⊆ A is called feasible if the sum of the numbers in S does not exceed B:∑

ai∈S
ai ≤ B.

The sum of the numbers in S will be called the total sum of S. You would like to select a feasible
subset S of A whose total sum is as large as possible. For example, if A = {8, 2, 4} and B = 11,
then the optimal solution is the subset S = {8, 2}.

(a) Look up the decision problem called “Subset Sum”. Explain briefly why the NP-hardness of
Subset Sum implies the NP-hardness of the above number packing problem.

(b) Here is an algorithm for this problem.

(i) Initially S = ∅ and define T = 0.

(ii) For i = 1, . . . , n: if T + ai ≤ B, then let S ← S ∪ {ai} and let T ← T + ai.

(iii) Return S

Give an instance in which the total sum of the set S returned by this algorithm is less than
half the total sum of some other feasible subset of A.

(c) Give a polynomial-time approximation algorithm for this problem with the following guaran-
tee: It returns a feasible set S ⊆ A whose total sum is at least half as large as the maximum
total sum of any feasible set S′ ⊆ A. Your algorithm should have a running time of at most
O(n log n).

Page 2 of 5



Advanced Algorithms Homework 3 CS181AA

Problem 2 - Fun with Vertex Cover (30 points)

The weighted minimum Vertex Cover problem is as follows. We are given a graph G = (V,E)
with positive costs c : V → R≥0 on vertices. The goal is to select a subset S ⊆ V of minimum cost
so that every edge is touched by a vertex in S. That is, a set S ⊆ V is feasible if for every edge
e = (u, v) ∈ E, we either have u ∈ S or v ∈ S (or both).

Consider the following natural approximation algorithms for weighted Vertex Cover. For each
of them, do the following:

(a) Briefly explain why the algorithm runs in polynomial time.

(b) Explain why the algorithm is guaranteed to output a feasible Vertex Cover.

(c) Give the best lower and upper bounds you can on the approximation ratio of the algorithm.

Some of these algorithms may do better in the special case when all costs are 1. If that is the
case, please point it out.

(a) Super-Greedy. Consider all the edges in some order. If the edge {u, v} being considered is
not covered yet, pick whichever of u or v has smaller cost.

(b) Greedy. Consider all the edges in some order. If the edge {u, v} being considered is not
covered yet, pick both vertices u and v.

(c) LP Rounding. The standard vertex-cover Linear Program is

min
∑
v∈V

cvxv s.t. xu + xv ≥ 1 ∀ {u, v} ∈ E, x ≥ 0.

Solve the LP to obtain the optimal fractional solution x∗. Then, return

S =
{
v ∈ V | xv ≥ 1/2

}
.

(d) Local Search. Two solutions S, S′ ⊆ V are neighbors if S′ can be obtained from S by
adding, deleting, or swapping a vertex (a swap simultaneously adds one vertex and drops
another). Start with any solution S ⊆ V . While there exists a neighboring solution S′ with
strictly lower cost, move to S′. When a local optimum is reached—i.e. all neighbors are no
cheaper—output that solution. (Don’t worry about the running-time for this question.)

Page 3 of 5



Advanced Algorithms Homework 3 CS181AA

Problem 3 - Evening Optimizer (25 points)

Imagine you’re a popular babysitter with a single evening free. Throughout the day, parents text
you asking if you can watch their kids during different time windows. Because you can only be in
one house at a time, you must choose a subset of jobs that don’t overlap. Everyone pays the same
flat rate, so your goal is to maximize the number of families you help. In scheduling terms:

- Each babysitting request is an open interval on a time line (you leave right at the finish time).

- Two requests are compatible if their intervals don’t overlap.

- You want the largest possible collection of pair-wise non-overlapping intervals.

This is exactly the unweighted interval-scheduling problem: we are given a collection of intervals
on the line, and the goal is to find a maximum cardinality subset of non-overlapping intervals. See
Figure 1.

time0 1 2 3 4 5 6 7 8

I1

I2

I3

I4

I5

Figure 1: The bold blue intervals form a maximum subset of non-overlapping intervals.

(a) Consider the “Earliest Start Time First” algorithm for the interval-scheduling problem. We
begin by selecting the interval whose left endpoint is earliest. We include this interval into the
solution, eliminate all overlapping intervals, and repeat until there are no intervals remaining.
Give an instance showing that this algorithm can have a bad approximation ratio.

(b) Now consider the “Earliest Finish Time First” algorithm. We iteratively select the interval
whose right endpoint is earliest, include it into the solution, eliminate overlapping intervals
and continue until there are no intervals remaining. Show that this algorithm always returns
an optimal solution.

(c) Consider the algorithm that orders the requests in increasing order of duration and greedily
selects them while maintaining feasibility. Show that this algorithm is a 1/2-approximation.

(d) What if prices are involved? This can be modeled by associating a positive weight to each
interval and asking for a maximum weight non-overlapping set. How would you handle this
generalization?

Page 4 of 5



Advanced Algorithms Homework 3 CS181AA

Problem 4 - The Absent-Minded Professor (25 points)

Professor Z. Latin leaves his building at the Edmunds Institute of Technology one dark and
foggy night and can’t remember where he parked his car. Imagine that Prof. Latin is standing at
the origin of a line (infinite in both directions). Every integer point on that line corresponds to
a parking spot where Prof. Lai might find his car. Because it’s dark and foggy, the professor can
only see the car at the spot at which he is currently standing.

0

Prof possible car

at distance d

d = 4

(a) Your first objective is to describe an algorithm for Prof. Latin to use to find his car. The
algorithm should cause him to travel no more than some constant times the distance that he
would have traveled had he known where his car was located. This constant (the competitive
ratio of the algorithm), should be strictly less than 10. You should state the competitive ratio
of your algorithm and show the derivation.

[Hint: Use a doubling search].

(b) Now imagine that, instead of a line of cars, there are k rays of cars which go infinitely outward
from the origin where Professor Latin is standing (part (a) handled the k = 2 case). Give an
algorithm for Professor Latin to find his car. Derive and state the competitive ratio of your
algorithm as a function of k.

0

Page 5 of 5


